Choosing $\{F_n\}$ For Countable A

bharathk98

May 2020

1 Motivation

Let f be a measurable function and let $A \subset \mathbb{R}^n$ be a measurable set.

Now let \mathcal{M} be a collection of measurable sets and let \mathcal{M}^+ be the collection of all measurable sets with positive Lebesgue Measure. If λ is the Lebesgue Measure, the average of f is already defined for every $A \in \mathcal{M}^+$ with the formula.

$$m_f(A) = \frac{1}{\lambda(A)} \int_A f d\lambda$$

However, I wish to extend $m_f : \mathcal{M}^+ \to \mathbb{R}$ to the function $\dot{m}_f : \mathcal{M} \to \mathbb{R}$ which gives sensible results for sets with zero Lebesgue Measure that lie between the infimum and supremum of f.

There are several ways to do this but I wish to briefly focus on countable A with infinite points. What would an intuitive average look like?

2 Defining Density

Suppose A is an arbitrary, countable set with infinite points and suppose d is the Hausdorff Dimension with H^d being the Hausdorff Measure

Moreover, suppose F_1, F_2, \cdots are a infinite sequence of sets denoted $\{F_n\}$, where $H^d(F_1), H^d(F_2), \cdots$ is positive and finite, $F_1 \subseteq F_2 \subseteq \cdots$, and $\bigcup_{n=1}^{\infty} F_n = A$.

If S is a subset of A, the density of S is defined as

$$D(S, \{F_n\}) = \lim_{\omega \to \infty} \frac{H^d \left(S \cap F_\omega\right)}{H^d \left(F_\omega\right)}$$

We can use D to find the average of f.

Unfortunately, there are multiple $\{F_n\}$ we can define which prevents us from getting a unique average.

While I believe there is a way we can find one, I'm not sure it will give a unique $\{F_n\}$

3 Question

Suppose we have the following:

•
$$\bigcup_{n=1}^{\infty} F_n = A$$

- $1 \le \omega \le \infty$
- $C(\min\{F_{\omega}\}) = \{x: x, y \in F_{\omega}, x, y \neq \min\{F_{\omega}\}, x \min\{F_{\omega}\} = \min\{y \min\{F_{\omega}\}\}\}$
- C^n is the *n*-th iteration of *C*. For example $C^3 (\min \{F_{\omega}\})$ is $C(C(C(\min \{F_{\omega}\})))$

•
$$P = \left\{ \bigcup_{n=1}^{H^{d}(F_{\omega})-1} C^{n+1}(\min\{F_{\omega}\}) - C^{n}(\min\{F_{\omega}\}) \right\}$$

• $T = \left\{ \bigcup_{n=1}^{H^{d}(P)-1} C^{n+1}(\min\{P\}) - C^{n}(\min\{P\}) \right\}$
• $\overline{T} = \frac{1}{|T|} \sum_{x \in T} x$

And standard Deviation of T is

$$\sigma\left\{T\right\} = \sqrt{\frac{1}{|T| - 1} \sum_{x \in T} \left(x - \overline{T}\right)^2}$$

Does there exist a group of F_{ω} with a cardinality less than ω which has the smallest difference from ω , such that the standard deviation of T has the smallest value as $\omega \to \infty$; and their density of S or $d(S, \{F_n\})$ for all the remaining F_{ω} ?

If this doesn't make sense how can we manipulate this to get a unique $d(S, \{F_n\})$

If not how do we manipulate this so we get a unique $d(S, \{F_n\})$ For example if

$$A = \left\{\frac{\sqrt{m}}{\sqrt{n}}: m, n \in \mathbb{N}\right\} \cup \left\{\frac{1}{\ln(n)}: n \in \mathbb{N}\right\}$$

Which F_{ω} would give the smallest standard deviation of T with a cardinality less than ω as $\omega \to \infty$ such that $\bigcup_{n=1}^{\infty} F_n = A$? Would they give the same $d(S, \{F_n\})$?

3.1 Example

For example, if $A = \mathbb{Q} \cap [0, 1]$, an F_{ω} that gives the smallest standard deviation with a cardinality greater than ω and closest to ω as $\omega \to \infty$ is

$$F_{\omega} = \left\{ \frac{r}{s!} : r, s \in \mathbb{N}, r \le s! \le \left\lceil e \exp\left(W\left(\frac{1}{e}\log\left(\frac{\omega}{\sqrt{2\pi}}\right)\right) + 1\right) - \frac{1}{2} \right\rceil \right\}$$

Note if the cardinality of F_{ω} is less than ω as $\omega \to \infty$, $\bigcup_{n=1}^{\infty} F_n = \mathbb{Q} \cap [0, 1]$ and all F_{ω} have a standard deviation for every ω .

I believe this is the only F_{ω} with the smallest standard deviation for every ω .