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0.1 Suggestion

Don’t treat this as a research paper. Lightly skim.

0.2 Theories One Should Know

• Descriptive Set Theory

• Measure Theory

• Box-Counting Dimensions

• Folner Sequences

1 Purpose

• I wish to create a measure that calculates arithmetic mean for functions
where it’s well-defined but calculates a new arithmetic mean for functions
where it’s not.

I wish to find a measure (possibly new) that calculates a unique arithmetic
mean for the largest class of functions and coincides with the arithmetic mean
of other functions.

2 Problems With Other Definitions

2.1 Lebesgue Measure

Suppose f : A→ B is an arbitrary measurable function, where A is a non-fixed
arbitrary subset of the real numbers.

• The Lebesgue Measure of A or λ(A) gives the average 1
λ(A)

∫
A
f(x)dλ and

is undefined when λ(A) = 0.

1



2.2 Counting Measure

• The counting measure, µ, of the domain, A, is denoted µ(A) and |A| is the
cardinality of A such that

µ(A) =

{
|A| if A is finite

∞ if A is infinite

and the average 1
µ(A)

∑
x∈A

f(x) is undefined when µ(A) =∞.

• Hence when generalizing the arithmetic mean we consider functions whose
domain has infinite points.

2.3 Hausdorff Measure

The Hausorff Measure seems like a proper solution but there lies an issue:
Suppose the domain has zero Lebesgue Measure and infinite elements.

• If we define the average on A using the Hausdorff Measure, we must rely
on its dimension to get a defined mean.

• If the dimension is zero, we get the counting measure (this gives a defined
mean when A is finite).

• If the dimension is one, we get the Lebesgue Measure (this gives a defined
mean when A has a measure greater than zero).

• When A has zero Lebesgue Measure with infinite points there exists a
dimension d ∈ [0, 1] where s < d give a measure of ∞ and s > d give a
measure of 0.

• If d = s the Haursdorff Measure would be any number between zero and
infinity and is therefore not unique.

2.4 Conditional Expectation

• When applying the conditional expectation for finding the average of f (in
the measure-theoretic sense) one must find a distribution of A.

• If A has zero Lebesgue Measure and infinite elements, I assume there is
multiple distributions to choose for defining the mean. Therefore we must
apply the axiom of choice to get a unique mean.

I assume we are unable to come up with a choice function that gives a unique
distribution for every A and in turn gives a unique measure for conditional
expectation.
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2.5 Properties Our Measure Should Have

If S is an arbitrary subset of A and A is an arbitrary subset of R, we should define
a probability measure P(S,A) which yields an arithmetic mean that coincides
with other arithmetic means. The measure should have the following properties.

• When S = A, P(S,A) = P(A,A) = 1

• When λ(A) ≥ 0, P(S,A) = λ(S)/λ(A)

• When S is countable and A is uncountable, P(S,A) = 0 (regardless if
λ(A) ≥ 0).

• When λ(S) = λ(A), with S being nowhere dense and A being dense in an
interval, then P(S,A) = 0

3 First Attempt In Generalizing Arithmetic Mean

3.1 Defining Measure P (Try and Read The Whole Sec-
tion)

If S ⊆ A:

• ` is the length of an interval

• (Ij)
m
j=1 and (Jk)

n
k=1, for m,n ∈ N, are a sequence of open intervals where

`(I1) = ... = `(In) = g ∈ R+, `(J1) = ... = `(Jm) = g ∈ R+ and the
infimum of equations below are taken over all possible Ij and Jk

M(g, S) =


g · inf

{
m ∈ N : S′ ⊆ S, S′ is countable, (S \ S′) ⊆

m⋃
k=1

Im

}
A is uncountable

g · inf

{
m ∈ N : S ⊆

m⋃
k=1

Im

}
A is countable

(1)

and

N (S,A) = lim
g→0

M (g, S)

M (g,A)
(2)

then we add O(g, S) so if A is a interval with finite length, O(g, S) gives the
Lebesgue Measure of S over the Lebesgue Measure of A.

O(g, S) =


g · inf

{
n ∈ N : Sj ⊆ S, N (Sj , A) = 0,

∞⋃
j=1

Sj = S′, (S \ S′) ⊆
n⋃
k=1

Jk

}
A is uncountable

g · inf

{
n ∈ N : S ⊆

n⋃
k=1

Jn

}
A is countable

(3)
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therefore the outer measure is

P∗(S,A) = lim
g→0

O(g, S)

O(g,A)
(4)

And the inner measure is P∗(S,A) = 1 − P∗(A \ S,A), meaning measure
P(S,A) exists when P∗(S,A) = P∗(S,A).

3.2 Defining P-Average

When P(S,A) is defined, the P-average of f : A→ B or f is defined as follows:

Split [a, b] = [min(A),max(A)] into sub-intervals using partitions xi

a = x0 ≤ · · · ≤ xi ≤ · · · ≤ xr = b

Here, if 1 ≤ i ≤ r, then [xi−1, xi] are sub-intervals of [a, b].

For every i, choose a vi ∈ A ∩ [xi−1, xi] and define Ai = A ∩ [xi−1, xi]. Then
define set P , such that i ∈ P ⊆ {1, ..., r ∈ N} when A ∩ [xi−1, xi] 6= ∅, giving

f(x) = lim
r→∞

∑
i∈P

f(vi)× P(Ai, A) (5)

(This looks tedious but one can use shortcuts to simplify the sum. If I write
it out post it will be too long.)

3.3 Examples Not Well-Defined By Current Definitions of
Mean But Defined By My Definition (of Mean)

3.4 First Example

Before defining function f , I will define sub-domains:

Suppose we set G0 = [0, 1]. We define (G0 + c)/d where if c, d ∈ R, add
every element in x ∈ G0 by c and divide by d. Therefore, if we define n ∈ Z+,
c ∈ {0, 2, 4} and d = 5 then we extend G0 to the recursion sequence Gn+1.

Gn+1 =
Gn
5
∪ Gn + 2

5
∪ Gn + 4

5
(6)

The first sub-domain, defined G, is

G =

∞⋂
n=0

Gn
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The second sub-domain shall be C or the Cantor Set and the third sub-domain
is Q ∩ [0, 1].

Therefore, we define f : (C ∪ G ∪Q) ∩ [0, 1]→ {1, 2, 3}:

f2(x) =


3 x ∈ G \Q
2 x ∈ C \ (G ∪Q)

1 x ∈ Q ∩ [0, 1]

3.5 Second Example

Consider function f where for it first sub-domain S1,

S1 =

{
1√
2s2

: s ∈ N
}

And its second domain S2

S2 =

{
1

2s
+

1

2t
: s, t ∈ N

}
Therefore, f4 : S1 ∪ S2 → {0, 1}

f4(x) =

{
1 x ∈ S1

0 x ∈ S2

3.6 Example Where P Is Undefined

Consider the following:

If f :
{

1
s : s ∈ N

}
→ {0, 1} and

f(x) =

{
1 x ∈

{
1

2s+1 : s ∈ N
}

0 x ∈
{

1
2s : s ∈ N

}
Suppose S1 =

{
1

2s+1 : s ∈ N
}

and S2 ∈
{

1
2s : s ∈ N

}
Using P∗, I approximated (and must prove using box-counting dimensions)

P∗(S1, S1 ∪ S2) ≥ 1/
√

2 and P∗(S2, S1 ∪ S2) ≥ 1/
√

2. Hence, P∗(S1, S1 ∪ S2) =
1−P∗(S2, S1 ∪ S2) ≤ 1− 1/

√
2 but 1/

√
2 6= 1− 1/

√
2. Hence with this case my

measure is undefined.

Instead we need a measure that gives the same value as P(S,A) when P
defined but gives different value when P(S,A) is undefined.
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3.7 Defining Density

Suppose A ⊆ R and S ⊆ A.

And suppose F1, ..., Fω are a sequence of sets denoted {Fn} where P(F1, A), ...,P(Fω, A)

are defined, F1 ⊆ F2 ⊆ · · · ⊆ Fω and lim
ω→∞

ω⋃
n=1

Fn = A

We write density of S as

d (S, {Fn}) = lim
ω→∞

P (S ∩ Fω, Fω)

The problem is there are several ways to write {Fn}. For A = Q ∩ [0, 1],
{Fn} can be written as:

{Fn} =
{m
n

: m,n ∈ N,m ≤ n ≤ ω
}

Since
{
m
n : m,n ∈ N

}
= Q

or

{Fn} =
{m
n2

: m,n ∈ N,m ≤ n2 ≤ ω
}

Since
{
m
n2 : m,n ∈ N

}
= Q

Moreover, when A is countable and dense in an interval and S is countable
and almost nowhere dense, one can come up {Fn} where the density of S is
non-zero. (This is non-intuitive.)

For instance, considerA =
(
Q ∪

{
1

ln(n) : n ∈ N
})
∩[0, 1] and S =

{
1

lnn : n ∈ N
}
∩

[0, 1]. One can come up with {Fn} =
{
m
n : m,n ∈ N, n 6= 0,m ≤ n ≤ ω

}
∪{

1
ln(n) : n ∈ N, 0 < ln(n) ≤ ω

}
which makes d (S, {Fn}) (I assume this would be

simple to prove but would like to check using mathematical proof)

Therefore, we must define a new density, where if A is dense in an interval,
and S is almost nowhere dense, then S shall always have zero density.

3.8 Defining New Density

If ψ ∈ A′ where A′ is the derived set of A and | · | is the absolute value, we define
the set of P measurable-sequences as

B(ψ, ε, ω, {Fn}) =

{
α : α ∈

ω⋃
n=1

Fn, |α− ψ| ≤ ε

}
which is in the interval [ψ − ε, ψ + ε]
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To get a unique {Fn}, we must define a choice function that can be applied
to arbitrary A and coincide with P(S,A) when P(S,A) is defined.

I’m don’t know how this can be done but here is my attempt: (Skip If You
Don’t Understand)

3.8.1 Attempt

Note the density without a choice function is simply:

d(S, {Fn} , ψ) = lim
ε→0

lim
ω→∞

P (S ∩B(ψ, ε, ω, {Fn}), B(ψ, ε, ω, {Fn}))

[I assume] we can define a choice function for any arbitrary A by doing the
following:

If σ is the standard deviation of a distribution such that if X is a non-fixed
arbitrary set and P-measurable, and X is the P-average of X (Section 3.2) with
X2 squaring all elements in X then

σ {X} =

√
X2 −X2

Therefore, if F(A) represents all sequences of sets with the same properties
as {Fn} but written in different forms, {Hn} , {Gn} ∈ F(A) and:

B(ψ, ε, ω1, {Gn}) =

{
α : α ∈

ω1⋃
n=1

Gn, |α− ψ| ≤ ε

}

B(ψ, ε, ω2, {Hn}) =

{
α : α ∈

ω2⋃
n=1

Hn, |α− ψ| ≤ ε

}

β =

{
{Gn} : ∀ ({Hn})∀ (ω2)∃ (ω1)

(
lim
ε→0

lim
ω2→∞

σ {B (ψ, ε, ω1, {Gn})}
σ {B (ψ, ε, ω2, {Hn})}

≤ 1

)

∀(Hn)∀ (ω2)∃(ω1)

lim
ε→0

lim
ω2→∞

P
(
B (ψ, ε, ω1, {Gn}) , B (ψ, ε, ω1, {Gn}) ∪B (ψ, ε, ω2, {Hn})

)
P
(
B (ψ, ε, ω2, {Hn}) , B (ψ, ε, ω1, {Gn}) ∪B (ψ, ε, ω2, {Hn})

) =

inf

|1− s| : s = lim
ε→0

lim
ω2→∞

P
(
B (ψ, ε, ω3, {Gn}) , B (ψ, ε, ω3, {Gn}) ∪B (ψ, ε, ω2, {Hn})

)
P
(
B (ψ, ε, ω2, {Hn}) , B (ψ, ε, ω3, {Gn}) ∪B (ψ, ε, ω2, {Hn})

) , s < 1





What this means is we want to find all {Gn} where for all {Hn} and ω2 there
exists an ω1 such that
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lim
ε→0

lim
ω2→∞

σ {B (ψ, ε, ω1, {Gn})}
σ {B (ψ, ε, ω2, {Hn})}

≤ 1

and for all {Hn} and ω2 there exists an ω1 such that if

s = lim
ε→0

lim
ω2→∞

P
(
B (ψ, ε, ω1, {Gn}) , B (ψ, ε, ω1, {Gn}) ∪B (ψ, ε, ω2, {Hn})

)
P

(
B (ψ, ε, ω2, {Hn}) , B (ψ, ε, ω1, {Gn}) ∪B (ψ, ε, ω2, {Hn})

)

and s < 1 then s should be as close to 1 as possible.

Hence, with {Fn} ∈ β, we get the density:

d(S, {Fn} , ψ) = lim
ε→0

lim
ω→∞

P (S ∩B(ψ, ε, ω, {Fn}), B(ψ, ε, ω, {Fn}))

I assume this would give us a unique value.

3.8.2 Attempt Finished

However, even when d(S, {Fn} , ψ) exists and gives a unique value, it only takes
the density over [ψ − ε, ψ + ε]. Therefore, we broaden the density to all A by
taking the weighted average of d(S, {Fn} , ψ) using measure P . In formal terms:

Divide [0, 1] (0 ≤ d(S, ψ) ≤ 1) into partitions 0 = c1 ≤ ·· · ≤ ci ≤ ·· · ≤ cu = 1
where if xi ∈ [ci−1, ci] and Ci = [ci−1, ci], our final upper density

D∗(S,A, {Fn}) = lim
u→∞

u∑
i=1

xi · P∗ ({ψ : d (S, {Fn} , ψ) = Ci} , A) (7)

And our final lower density is

D∗(S,A, {Fn}) = 1− lim
u→∞

u∑
c=1

xi · P∗ ({ψ : d (A \ S, {Fn} , ψ) = Ci} , A) (8)

Therefore, our final density D(S,A, {Fn}) exists when:

D∗(S,A, {Fn}) = D∗(S,A, {Fn})
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3.9 Defining The Average

To define the average, first split [a, b] = [min(A),max(A)] into sub-intervals
using partitions xi

a = x0 ≤ · · · ≤ xi ≤ · · · ≤ xr = b

Here, if 1 ≤ i ≤ r, then [xi−1, xi] are sub-intervals of [a, b].
For every i, choose a vi ∈ A ∩ [xi−1, xi] and define Ai = A ∩ [xi−1, xi]. Next

we define set P , such that i ∈ P ⊆ {1, ..., r ∈ N} when A ∩ [xi−1, xi] 6= ∅. This
gives

lim
r→∞

∑
i∈P

f(vi)×D(Ai, A) (9)

(This may look tedious but we can use shortcuts to simplify the sum. If I
write it out the post will be too long.)

4 Examples

Here are section where one must apply the density and average:

4.1 Third Example

Suppose we want to define f3 such that if C is the Cantor Set, the first sub-domain
of f3 is:

Sn =

∞⋃
n=0

2n−1⋃
k=0

{
3−n(x+ k) : x ∈ C

}
If G is the first sub-domain in second example (section 3.4), the second

sub-domain of f3 is:

Tn =

( ∞⋃
n=0

3n−1⋃
k=0

{
5−n(x+ k) : x ∈ G

})
\ Sn

Therefore f3 : Sn ∪ Tn → {1, 2}

f3(x) =

{
2 x ∈ Sn
1 x ∈ Tn
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4.2 Fourth Example

Consider function f4(x) where f4 : Q ∩ [0, 1]→ {0, 1}

f4(x) =

 1 x ∈
(
Q \

{
s

2t+1 : s, t ∈ N
})
∩ [0, 1]

0 x ∈
{

s
2t+1 : s, t ∈ N

}
∩ [0, 1]
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