2) Consider the function φ : $\mathbb{R} \times (-1, 1) \mapsto \mathbb{R}^3$ given by

$$\varphi(u,v) = \left(\left(1 + v \sin\left(\frac{u}{2}\right) \right) \cos u , \left(1 + v \sin\left(\frac{u}{2}\right) \right) \sin u , v \cos\left(\frac{u}{2}\right) \right) \in \mathbb{R}^3$$

for $u \in \mathbb{R}$, $v \in (-1, 1)$. The *Mobius Strip M* is the image of this function, i.e.

 $M = Im \varphi$

- a) Show that *M* is a C^{∞} two-dimensional submanifold. (Suggestion: restrict φ to obtain parametrizations)
- b) Calculate, in (u, v), the vector product

$$Z = \frac{\partial \varphi}{\partial u} \times \frac{\partial \varphi}{\partial v}$$

where $\frac{\partial \varphi}{\partial u} \coloneqq D\varphi(1,0)$ and $\frac{\partial \varphi}{\partial v} \coloneqq D\varphi(0,1)$.

c) A vector field onto a submanifold $N \subset \mathbb{R}^n$ is an application $X : N \to \mathbb{R}^n$. Said field is *tangent* (to N) if $X(p) \in T_pN$ for every $p \in N$, and *normal* (to N) if $X(p) \in (T_pN)^{\perp}$ for every $p \in N$. Show that there is no normal, continuous non-zero-in-every-point field $X : M \to \mathbb{R}^3$ onto the Mobius Strip. (Suggestion: note that if there was such an X, we should have that $X \circ \varphi(u, v) = f(u, v)Z(u, v)$ where f is continuous and never zeroes. Evaluate that in points (u, 0) to reach a contradiction.)