1) Let $M^m \subseteq \mathbb{R}^k$ and $N^n \subseteq \mathbb{R}^l$ be submanifolds. A C^{∞} application $f: M \to N$ is a class C^{∞} diffeomorphism if it has C^{∞} inverse.

a) Show that every parametrization $\phi: U_0 \to M$ is a diffeomorphism onto its image, when the image is seen a submanifold.

b) Show that $P = \{(x, y, z) \in \mathbb{R}^3 : z = x^2 + y^2\}$ is a class C^{∞} two-dimensional submanifold of \mathbb{R}^3 . Use projection in the xy plane to show that *P* is diffeomorph to \mathbb{R}^2 .

c) Prove the *inverse function theorem* for submanifolds: if $df_p: T_p M \to T_{f(p)}N$ is a linear isomorphism, there exists open sets $p \in U \subseteq M$ and $f(p) \in V \subseteq N$ such that the restriction $f|_U: U \to V$ is a diffeomorphism. (Suggestion: use parametrizations).

d) Given 0 < r < R and $U = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 > 0\}$. We have that 0 is the regular value of the function

$$f:(x, y, z) \in U \mapsto \left(\sqrt{x^2 + y^2} - R\right)^2 + z^2 - r^2$$

and therefore $M := f^{-1}(0)$ is a two-dimensional submanifold in \mathbb{R}^3 . Show that

$$\xi : ((x_1, y_1), (x_2, y_2)) \in S^1 \times S^1 \mapsto ((R + ry_1)x_2, (R + ry_1)y_2, rx_1 \in M)$$

is well defined and that it is a diffeomorphism, Finish saying that M is diffeomorph to the T^2 torus.