
Question: Use induction to prove that
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for all n ≥ 1.

Base Case: Observe that 1 ≤ 1 = 2
√

1 − 1, and thus the statement holds for n = 1.

Inductive Step: Suppose that
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for some given k ≥ 1. Thus, by the induction hypothesis
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Therefore, it suffices to demonstrate that (2
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It’s certainly the case that k2 + k ≤ k2 + k + 1
4 for all k ≥ 1, and thus, by factoring each side
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and finally since
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k + 1 > 0 we can divide through to obtain 2
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k + 1 − 1 as desired.

Thus we have shown by the principal of mathematical induction, that
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for all n ≥ 1.
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